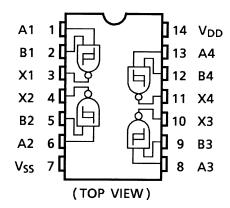
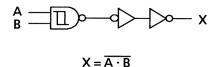
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC4093BP,TC4093BF,TC4093BFN

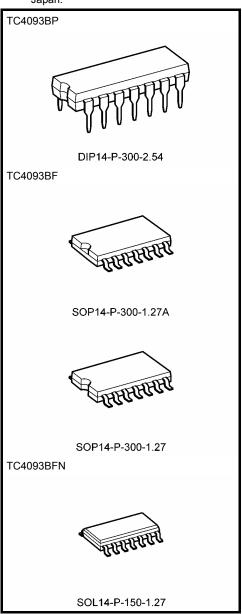
TC4093B Quad 2-Input NAND Schmitt Triggers


The TC4093B is a quad 2-input NAND gate having Schmitt trigger function for all the input terminals.

Since the circuit threshold voltage varies with rising time and falling time of the input waveform (VP and VN), this gate can be used for a wide variety of applications to line receivers, waveform shaping, astable multivibrators, monosatable multivibrators, etc.


In addtion to regular NAND gates.

As the TC4093B and the TC4011B are identical in pin assignment, they are compatible each other.

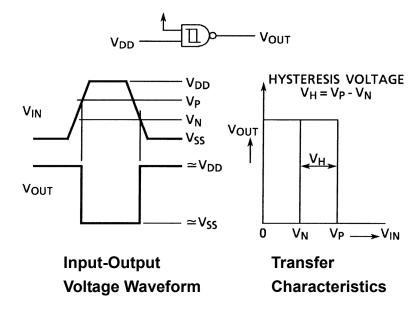

Pin Assignment

Logic Diagram

Note: xxxFN (JEDEC SOP) is not available in Japan.

Weight

 DIP14-P-300-2.54
 : 0.96 g (typ.)


 SOP14-P-300-1.27A
 : 0.18 g (typ.)

 SOP14-P-300-1.27
 : 0.18 g (typ.)

 SOL14-P-150-1.27
 : 0.12 g (typ.)

Input-Output Characteristic

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	V_{DD}	V _{SS} - 0.5~V _{SS} + 20	V
Input voltage	V _{IN}	V _{SS} – 0.5~V _{DD} + 0.5	٧
Output voltage	V _{OUT}	V _{SS} – 0.5~V _{DD} + 0.5	V
DC input current	I _{IN}	±10	mA
Power dissipation	P _D	300 (DIP)/180 (SOIC)	mW
Operating temperature range	T _{opr}	−40~85	°C
Storage temperature range	T _{stg}	−65 ~ 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Recommended Operating Conditions (VSS = 0 V) (Note)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
DC supply voltage	V_{DD}	_	3	_	18	V
Input voltage	V _{IN}	_	0	_	V_{DD}	V

2

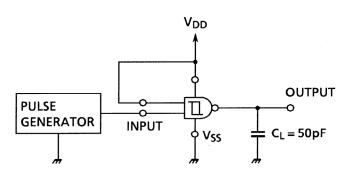
Note: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

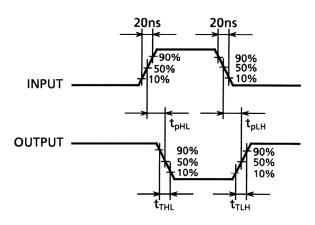
Static Electrical Characteristics ($V_{SS} = 0 V$)

01		Sym-	Test Condition		-40°C			25°C		85°C		
Charac	cteristics	bol		V _{DD} (V)	Min	Max	Min	Тур.	Max	Min	Max	Unit
High-level voltage	l output	V _{OH}	$ I_{OUT} < 1 \mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.00 10.00 15.00	_ _ _	4.95 9.95 14.95	— — —	V
Low-level voltage	output	V _{OL}	$ I_{OUT} < 1 \mu A$ $V_{IN} = V_{DD}$	5 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0.00 0.00 0.00	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	V
Output hig	gh current	ІОН	$V_{OH} = 4.6 \text{ V}$ $V_{OH} = 2.5 \text{ V}$ $V_{OH} = 9.5 \text{ V}$ $V_{OH} = 13.5 \text{ V}$ $V_{IN} = V_{SS}, V_{DD}$	5 5 10 15	-0.61 -2.50 -1.50 -4.00	1 1 1 1	-0.51 -2.10 -1.30 -3.40	-1.0 -4.0 -2.2 -9.0		-0.42 -1.70 -1.10 -2.80		mA
Output lov	w current	I _{OL}	$V_{OL} = 0.4 \text{ V}$ $V_{OL} = 0.5 \text{ V}$ $V_{OL} = 1.5 \text{ V}$ $V_{IN} = V_{DD}$	5 10 15	0.61 1.5 4.0	— — —	0.51 1.30 3.40	1.5 3.8 15.0	_ _ _	0.42 1.10 2.80	_ _ _	mA
High thres	shold	V _P	V _{OUT} = 0.5 V, 4.5 V V _{OUT} = 1.0 V, 9.0 V V _{OUT} = 1.5 V, 13.5 V	5 10 15	_ _ _	_ _ _	2.05 4.10 6.20	2.8 5.3 7.8	3.55 7.00 10.40	_ _ _	_ _ _	V
Low thres voltage	hold	V _N	V _{OUT} = 0.5 V, 4.5 V V _{OUT} = 1.0 V, 9.0 V V _{OUT} = 1.5 V, 13.5 V	5 10 15	_ _ _		1.5 3.2 4.8	2.3 4.5 6.6	3.15 6.30 9.30	_ _ _	_ _ _	V
Hysteresis	s voltage	V _H	_	5 10 15	— — —		0.20 0.30 0.45	0.5 0.8 1.2	0.85 1.40 1.90	_ _ _	— — —	V
Input current	"H" level	l _{IH}	V _{IH} = 18 V V _{IL} = 0 V	18 18	_	0.1 -0.1	_	10 ⁻⁵ -10 ⁻⁵	0.1 -0.1	_ _	1.0 -1.0	μА
Quiescent current	t supply	I _{DD}	V _{IN} = V _{SS} , V _{DD} (Note)	5 10 15	_ _ _	1 2 4	— — —	0.001 0.002 0.004	1 2 4	_ _ _	7.5 15.0 30.0	μА

3

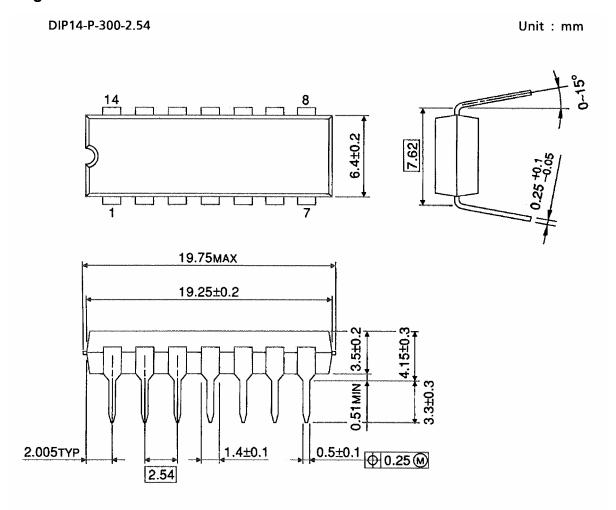

Note: All valid input combinations.

Dynamic Electrical Characteristics (Ta = 25°C, V_{SS} = 0 V, C_L = 50 pF)


Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit	
Output transition time			V _{DD} (V)	_	80	200	
(low to high)	tтLH	_	10 15	_	50 40	100 80	ns
Output transition time (high to low)	t _{THL}	_	5 10 15	_ _ _	80 50 40	200 100 80	ns
Propagation delay time	t _{pLH}	_	5 10 15	_ _ _	130 60 40	260 120 80	ns
Input capacitance	C _{IN}	_	•	_	5	7.5	pF

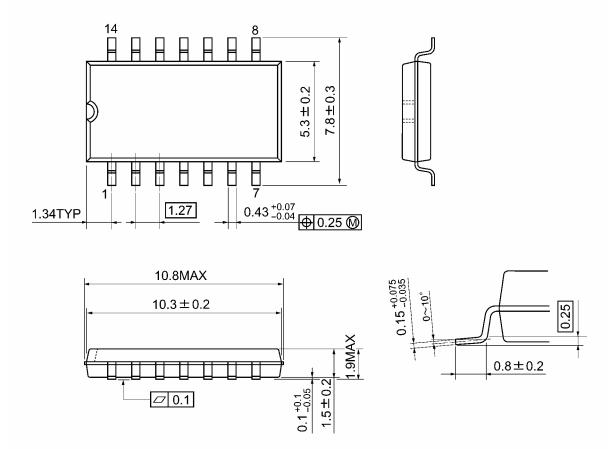
Circuit and Waveform for Measurement of Dynamic Characteristics

Circuit Waveform



DUTY RATIO = 50%, f = 500kHz

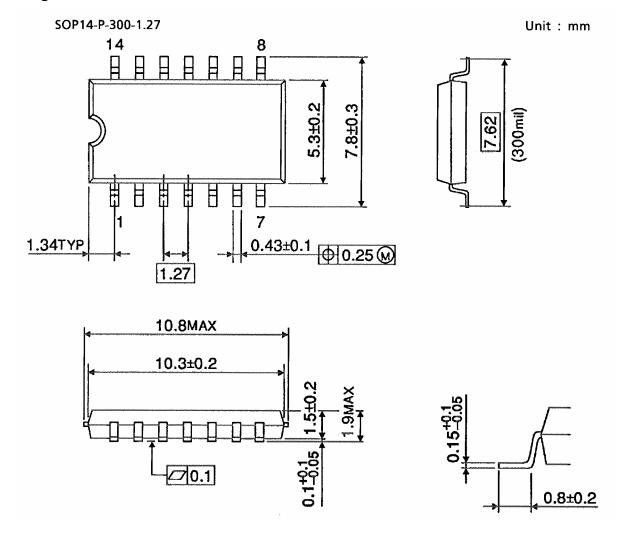
Package Dimensions



5

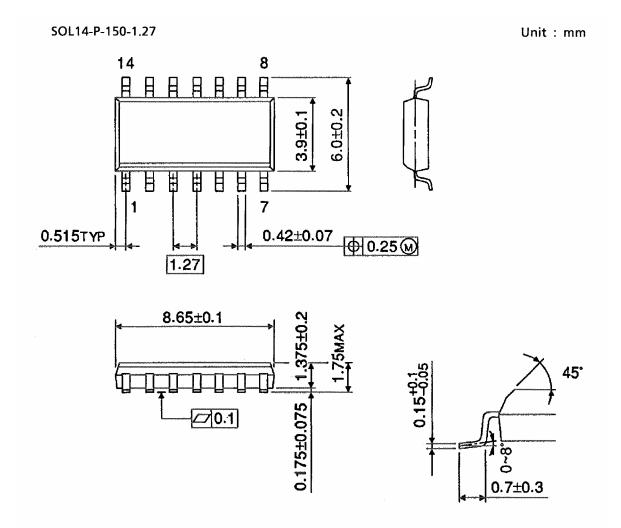
Weight: 0.96 g (typ.)

Package Dimensions


SOP14-P-300-1.27A Unit: mm

6

Weight: 0.18 g (typ.)


Package Dimensions

Weight: 0.18 g (typ.)

TOSHIBA

Package Dimensions (Note)

8

Note: This package is not available in Japan.

Weight: 0.12 g (typ.)

Note: Lead (Pb)-Free Packages

DIP14-P-300-2.54 SOP14-P-300-1.27A SOL14-P-150-1.27

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

9